Thalassamia

Hemoglobin Types

Hemoglobin Type Globin Chains

- Hgb A—92%----- α2β2
- Hgb A2—2.5%----- α2δ2
- Hgb F <1%----- $\alpha 2\gamma 2$
- Hgb H ----- β4
- Bart's Hgb----- γ4
- Hgb S----- $\alpha 2\beta 2$ 6 glu \rightarrow val
- Hgb C---- $\alpha 2\beta 2 6^{\text{glu} \rightarrow \text{lys}}$

Other genetic variants of β thalassamia 1-Haemoglobin Lepore

- unequal crossing over between the beta (β) gene and the delta (δ) gene.
- Crossing over produced a delta-beta fusion gene, which may well
 be functional, but is expressed at very low levels because it is
 controlled by the very weak delta gene promoter.
- This event gave rise to hemoglobin Lepore, which is a betathalassemia
- It has the same E/P mobility as Hb S, **D.D:** by acid ph
 - unequal crossing over
 hemoglobin Lepore (β-thalassemia)

- unequal crossing over occurred due to the close homology of the δ and β -genes: only 10 out of 146 residues differ (the genes are ~90% homologous to each other)
- the consequence can be severe $\beta\text{-thalassemia}$ due to decreased synthesis of the $\delta\beta\text{-fusion}$ (due to the weak $\delta\text{-globin}$ promoter)

Genetic variants & clinical presentation:

Homozygous:

(δβ) lepore/(δβ) lepore

Hb A: 0

Hb A2: 0

Hb F: 70-92%

Hb lepore: 8-30%

Clinically:

Thalassamia major

Heterozygous:

 $\beta/(\delta\beta)$ lepore

Hb A: 80-90 %

Hb A2: ↓

Hb F: 1-3%

Hb lepore : 5-15 %

Clinically:

Thalassamia minor

Double Heterozygous:

 $\beta + /(\delta\beta)$ lepore

 $\beta o/(\delta\beta)$ lepore

Hb A: 0 in β o, present e' variable amount in β +

Hb A2: **↓**

Hb F : ↑

Hb lepore: 10 %

Clinically:

Thalassamia intermedia

2- δβ Thalassamia

- \downarrow or absent synthesis of δ and β globin chains .
- † production of g globin chain, but not enough to compensate for deficient δ and β globin production.
- So excess α chain deposit \longrightarrow more anaemia than HPFH
 - · large deletions (examples of large deletions with little or no phenotype)
 - \cdot δ/β -thalassemia -- some compensation by γ -chain synthesis
 - HPFH -- entirely compensated by γ-chain synthesis

(deleted regions are indicated by the boxes below the chromosome)

Genetic variants & clinical presentation:

Homozygous:

 $(\delta\beta)$ o/ $(\delta\beta)$ o

Hb A: 0

Hb A2: 0

Hb F: 100 %

Clinically:

Thalassamia intermedia

Heterozygous:

 $\beta/(\delta\beta)$ o
Hb A: < 90 %

Hb A2: N or ↓

Hb F: ↑ 5-20 %

Clinically:

Thalassamia minor

3- Hereditary Persistence of foetal Hb (HPFH)

- \downarrow or absent synthesis of δ and β globin chains .
- The \uparrow production of γ globin chain, is sufficient to almost balance α chain synthesis .
- minimal α chain deposit \longrightarrow milder anaemia than $\delta\beta$ thalass.

Genetic variants & clinical presentation:

Homozygous:

HPFH/HPFH

Hb A: 0

Hb A2: 0

Hb F: 100 %

Clinically:

no anaemia

♦ MCV, **♦** MCH e' mild polycythemia

Heterozygous:

β/ HPFH

Hb A: present

Hb A2: ↓

Hb F: 10-35 %

Clinically:

no clinical abnormality

Hb conc is N

MCV & MCH r slightly ↓

<u>α Thalassaemia</u>

deficient/absent α subunits

Molecular basis:

Mainly deletion

I- Deletion:

Of short arm of chromosome 16

II- Non deletion:

- Mutation of transcription
- " " processing
- ,, ,, translation

Deletion of both α genes on a chromosome = α o

"," ,, 1
$$\alpha$$
 gene ,, ,, = α +

Defective fetal & adult Hb production

Hb A $(\alpha 2\beta 2)$

Hb A2 $(\alpha 2\delta 2)$

Hb F $(\alpha 2\gamma 2)$

In fetus: $\uparrow \gamma$ Hb Barts ($\gamma 4$)

In adults : β Hb H (β 4)

Types:

- Silent Carrier
- Trait (Minor)
- Hemoglobin H Disease
- Major (Hemoglobin Bart's)
 - \bullet normally there are four α -globin genes in heterozygotic somatic cells
 - loss of α-globin genes results in different severities of α-thalassemia depending on the number of genes lost in combination with deletion chromosomes

Classification & Terminology of a Thalassemia

- Normal $\alpha\alpha/\alpha\alpha$
- Silent carrier $-\alpha/\alpha\alpha$
- Minor $-\alpha/-\alpha$

 $--/\alpha\alpha$

- Hb H disease $--/-\alpha$
- Barts hydrops fetalis --/--

<u>α Thalassemia</u>

- Result from gene deletions
- One deletion—Silent carrier; no clinical significance
- Two deletions—a Thal trait; mild hypochromic microcytic anemia
- Three deletions—Hgb H; variable severity, but less severe than Beta Thal Major
- Four deletions—Bart's Hgb; Hydrops Fetalis; In Utero or early neonatal death

Clinical Outcomes of Alpha Thalassemia

- Silent carriers
 - asymptomatic
 - "normal"
- Alpha Thalassemia minor (trait)
 - no anemia
 - microcytosis
 - -unusually small red blood cells due to fewer Hb in RBC
 - "normal"
- Alpha Thalassemia intermedia ("Hemoglobin H")
 - microcytosis & hemolysis (breakdown of RBC)
 - results in severe anemia
 - bone deformities
 - splenomegaly (enlargement of spleen)
 - "severe and life threatening"
- Alpha Thalassemia major
 - Hb Bart's
 - fatal hydrops fetalis
 - occurs in utero

Hydrops Foetalis

- No α chain at all (loss of 4 genes)
- Most severe form due to intra-uterine hypoxia, pallor, oedema, HSM
- Intra-uterine death (incompatible e' life)

Hb E/P:

Hb barts: $(\gamma 4) (\gamma 2 \gamma 2)$

Hb H: (β4) (β2β2)

Hb Portland: $(\zeta \ 2 \ \gamma 2)$

N.B: Hb H & Hb barts have high O2 affinity.

D.D:

Rh incompatibility

	Rh incompatibility	Hydrops Foetalis	
Rh of baby	+ ve	-ve	
		or	
		+ve	
Direct Coomb's	Strong + ve	-ve	
Hb electrophoresis	Normal	Abnormal	
		Hb H or barts	

Hb H disease

Deletion of 3 α genes $\alpha o/\alpha + --/-\alpha$

Hb H: $(\beta 4)$ $(\beta 2\beta 2)$

C/P:

- · Chronic H.A
- Hb: 7-10 g/dl
- Hypochromia, target cs
- Retics: 5-10 %
- Splenomegaly, hypersplenism
- Bony changes

Lab diagnosis:

Evidences

CBC:

- MHA
- Anisocytosis, poikilocytosis
- Retics 5-10%
- Hb H : brilliant cresyl blue → inclusion bodies in all cells → golf ball appearance
- Hb E/P:

On acid ph 6-7

• At birth:

Hb barts $(\gamma 4)$: 20-40 %

Hb F, A (the rest)

• After 1 year:

Hb H: 5-40 %

± Hb barts

Hb A: 25 %

Hb A2 : ↓

Acquired Hb H disease

- Observed in association e' pre-leukemic syndromes as MDS
- Occurs in elderly men

Lab:

RBCs r dimorphic : normal & hypochromic cells

Diagnosis:

Hb E/P:

Hb H 5-70 %

Clinical & Haematological features of α thalassamia syndromes

Phenotype	Genotype	C/P	Newborn	After 1 year
Hydrops Foetalis	(/)	Neonatal death e' severe anaemia	Hb barts (γ4) 80-90 %	Doesn't live
Hb H disease	(/- α)	Ch. H.A as thalas. intermedia	Hb barts 20-40 % Hb A,F	Hb H 5-30 % ± Hb barts Hb A, A2
Thalass. minor	(- α/- α) (/α α)	Little or no anaemia e' MCV, MCH	Hb barts 2-10 %	Normal
Silent carrier	(- α/α α)	No clinical or haematological abnormalities	Hb barts 0-2%	Normal

Alpha Thalassemias

- Usually no treatment indicated
- 4 deletions incompatible with life
- 3 or fewer deletions have only mild anemia

Treatments for Alpha Thalassemia

- Silent Carrier no treatment required
- Trait (Minor) no treatment required
- Hemoglobin H Disease Folate
 - avoid iron supplements
- Major (Hemoglobin Bart's) –RBC transfusion while still in doubt, else fetus is stillborn or dies shortly

Program for preventation of thalassaemia

I- Genetic counseling:

Screening all population at school age & warning carrier about the risk of marriage to another carrier

II- Pre-natal diagnosis & carrier detection:

A- Sampling:

- 1- Amniocentesis (15-17 weeks)
- 2- Chorionic villous sampling (9-10 wks)

B- DNA analysis:

- i- Southern blot
- ii- Restriction enzymes
- iii- PCR- RFLP
- iv- PCR amplification of DNA